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Transition curves andiso-βu lines in nonlinear Paul traps
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Abstract

This paper has the motivation to understand the role of field inhomogeneties in altering stability boundaries in nonlinear
Paul traps mass spectrometers. With the inclusion of higher order terms in the equation of motion, the governing equation
takes the form of a nonlinear Mathieu equation. The harmonic balance technique has been used to obtain periodic solutions
which represents the transition curves,βu = 0 andβu = 1. A continuous fraction expression, similar in form to the linear
case, has also been derived to plotiso-βu lines within the stability region. The expression qualitatively reflects experimental
observations in literature related to ion stabilities in nonlinear traps. The role of hexapole and octopole superposition in shifting
the stable region as well as ion secular frequencies in nonlinear Paul traps has been discussed using the analytical expression
derived in this paper. (Int J Mass Spectrom 218 (2002) 181–196)
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Paul trap mass spectrometer consists of a three
electrode geometry mass analyzer with two endcap
electrodes and a central ring electrode, all machined to
a hyperboloid geometry[1,2]. Ions of an analyte gas
are trapped in the central cavity of the mass analyzer
when an oscillating rf potential is applied between
the central ring electrode and the endcap electrodes
[1,3,4]. In an ideal Paul trap mass spectrometer, the
equations of motion of the ion in the axial and radial
direction are uncoupled, and can be written in the
canonical form of the linear Mathieu equation[5,6]

ü + (au + 2qu cos 2ξ)u = 0 (1)

whereu represents the position co-ordinates in ther
andz direction and
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ξ = 1
2Ωt (2)

az = −2ar = − 8eU0

mr2
0Ω

2
(3)

qz = −2qr = − 4eV0

mr2
0Ω

2
(4)

wheret is time, e charge of an electron,m the mass
of ion, U0 the magnitude of the dc potential,V0 the
magnitude of the rf potential (zero-peak),Ω the an-
gular frequency of the rf potential andr0 is the radius
of the central ring electrode.

Stability of ions in Paul traps is characterized by
the overlap region (on ana–q plot) where both the
axial and radial motions are stable. Within this region,
ions execute motion with characteristic frequencies,
referred to as the ion’s secular frequency, which de-
pends on the operating parameters of the trap. The
secular frequency of the ion is given by the expression
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ωsecular= 1
2βuΩ (5)

whereβu is a parameter dependent on the Mathieu
parametersa and q, through a continuous fraction
relationship [3,7]. The stability boundaries on the
Mathieu stability plot, corresponding to periodic so-
lution of Eq. (1), are marked by the curves ofβz and
βr having values of 0 and 1. The lines corresponding
to fractionalβz or βr values, called theiso-βu lines,
can be traced inside the Mathieu plot by using the
continuous fraction relationship.

Over the past several years reports in literature
suggest that in practical Paul traps both the stability
boundary as well as the secular frequencies are dif-
ferent from those predicted by the Mathieu equation.
The shift of stability boundaries in nonlinear ion traps
due to the hexapole and octopole superposition has
been discussed by Franzen[8]. Perturbation in sta-
bility diagram due to space charge has been observed
by Fischer[9], Dawson[1] and Fulford et al.[10]
in a three-dimensional quadrupole ion trap. Johnson
et al. [11] have made a comparative study of the
Mathieu stability plot between a linear and a stretched
quadrupole ion trap. Arkin et al.[12] in their character-
ization studies of a hybrid trap have observed shift in
stability boundaries inz andr directions. Franzen[13]
and Franzen et al.[14] in their simulation studies have
observed shifts in secular frequencies due to hexapole
and octopole superpositions. Makarov[15] and Luo
et al. [16] using a Duffing oscillator[17–19] model
have discussed the shift in secular frequencies due to
the higher order multipole superpositions. Sugiyama
and Yoda[20] have experimentally observed perturba-
tion in ion secular frequencies in their studies on an-
harmonic oscillations of ions trapped in a rf trap with
light buffer gas. Cox et al.[21] have experimentally
investigated mass shifts in nonlinear ion traps. Secu-
lar frequency shifts have also been observed by Nappi
et al. [22] by using non-destructive ion detection
method.

The hardware configuration of the practical Paul
trap differs from the ideal Paul trap in that the practi-
cal traps have truncated electrodes[23], holes in one
endcap electrode for enabling entry of electrons for

ionization of the analyte gas and holes in the other
endcap electrode for collection of destabilized ions,
mechanical misalignment in addition to experimental
constraints such as space charge[24], damping due
to the buffer gas[25] and excitation potential applied
to the endcap electrodes[26,27]. An important conse-
quence of the practical and experimental constraints is
that the field inside the trap is no longer linear but has
small multipole contributions. These multipole terms
in the potential function results in the equation of mo-
tion taking the form of a nonlinear Mathieu equation
with appropriately weighted higher order terms ap-
pearing in the Mathieu equation.

In ion traps, the influence of multipole field su-
perpositions on ion dynamics has been exhaustively,
numerically, investigated by Franzen et al.[14] and
the role of the different higher order field terms on
ion motion atqcut-off has been discussed. There are
now simulation packages available which simulate
ion trajectories in nonlinear fields. Examples of such
packages include the integrated system for ion simula-
tion (ISIS) program by Londry et al.[28], simulation
program for quadrupole resonance (SPQR) by March
and co-workers[26,27], the ITSIM of Bui and Cooks
[29] and Dahl’s SIMION[30]. Analytically, attempts
to understand ion dynamics in practical Paul traps
have relied on the solution of the Duffing equation.
Examples of the use of Duffing equation in practical
Paul traps to understand ion dynamics include the
report of Makarov[15], Luo et al.[16], Vedel et al.
[31], Sugiyama and Yoda[25] and a few efforts by our
group[32–34]. The limitation of the Duffing equation
in the context of our present effort is primarily on
account of its applicability toq values of up to about
0.4. Beyond thisq-value, the assumption that the am-
plitude of the micromotion is small in comparison to
the secular motion no longer holds. In a recent study,
however, along thea = 0 axis atβz = 1, Sudakov
[35] has successfully used the Duffing equation to
model the beat envelop at the stability boundary as a
slow variable but this may not be possible along the
entire perimeter of the stability boundary.

In the linear Mathieu equation, at the stability
boundary, there is both a periodic solution as well as
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one whose amplitude grows linearly with time. There-
fore, finding a periodic solution is exactly equivalent
to finding the stability boundary. However, for the
nonlinear equation this is not so. As shown for the
βz = 1 line by Sudakov[35], as the rf is slowly
ramped and the stability boundary is crossed, the “pe-
riodic solution” manifests as an oscillatory solution
with a slowly growing amplitude. When the amplitude
becomes sufficiently large the ion is detected. It has
been recognized that the presence of multipole fields
“blurs” the sharpness of the stability boundaries and
both experimental[11,12,36]and simulation studies
[8,35] have referred to early and delayed ejection of
ions at the stability boundary being caused by field
inhomogeneties. It was seen that positive octopole
superposition causes an early ejection where as neg-
ative octopole and hexapole superposition results in
delayed ejection. This lack of sharpness of the sta-
bility boundary arises on account of transition curve
having amplitude dependence[35].

In this paper, we examine the transition curves ob-
tained by assuming a periodic solution to a weakly
nonlinear Mathieu equation to define theβu = 0 and
βu = 1 boundaries. It will be seen that the transi-
tion curves we present for small nonlinearities, as is
the case in practical traps, does explain the influence
of higher order superpositions reported in literature.
Additionally, an emphasis will be on developing a
continuous fraction relationship forβu, as is available
for the linear Mathieu equation, to enable construc-
tion of iso-βu lines, which in turn provides a means to
estimate secular frequencies throughout the stability
region in nonlinear Paul traps.

2. Equation of ion motion in nonlinear fields

The ion motion inside the trap can be obtained from
its LagrangianL [37,38], which is given by

L = 1
2m(ż2 + ṙ2) − eV(r, z, t) (6)

wherem is the mass of the ion,V (r, z, t) is the poten-
tial distribution function,ż and ṙ corresponds to the
velocities in axial and radial directions, respectively.

The corresponding equation of motion of the system
is given by

d

dt

(
∂L

∂u̇

)
− ∂L

∂u
= 0 (7)

Hereu corresponds to the generalized co-ordinates in
axial (z) and radial (r) directions, respectively. The
potential distribution within the ideal Paul trap has
both spherical and rotational symmetry. In a practical
ion trap where nonlinearities are present, Legendre
polynomials are normally selected for expressing these
nonlinearities[38–40]since it has the same symmetry
as the system for representing the higher order terms.

If Pn is the Legendre polynomial of ordern, then
the potential distribution inside the trap in terms of
spherical coordinates (ρ, θ , ϕ) is given by

φ(ρ, θ, ϕ) = φ0

∞∑
n=0

An

ρn

rn0
Pn(cosθ) (8)

whereAn is the dimensionless weight factors for dif-
ferent multipole terms,ρ is the position vector andφ0

is a time-dependent quantity and is given by

φ0 = U0 + V0 cosΩt (9)

In our computations two higher order multipoles viz.,
hexapole and octopole superpositions corresponding
to n = 3 and 4, are taken into account along with
the quadrupole component for calculating the poten-
tial distribution inside the trap. ExpandingEq. (8)by
substituting the Legendre polynomials used by Beaty
[39] for representing the higher order multipoles, we
get the following expression for the potential distribu-
tion inside the trap as

V (z, r, t)= −A2

r2
0

(U0 + V0 cosΩt)

×
[
z2 − r2

2
+ h

r0

(
z3 − 3

2
zr2
)

+ f

r2
0

(
z4 − 3r2z2 + 3

8
r4
)]

(10)

whereh = A3/A2 and f = A4/A2 and A2, A3 and
A4 are the strength of quadrupole, hexapole and oc-
topole superposition, respectively. In ideal Paul traps
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the weight factorA2 = 1 and weight factors of higher
order multipole (in our computationsA3 andA4) are
zero. In nonlinear traps, the boundary conditions (r =
r0 andz = 0) and (r = 0 andz = z0) can be used to
obtain the value of the quadrupole weight factor. For
a trap with hexapole and octopole superpositions with
a potentialφ0 being applied to the central ring elec-
trode and with the endcap electrodes kept at ground
potential we have

A2 ∼=
[
1 − 1

2
√

2
h + 1

8f
]

(11)

In the axial direction for deriving the equation of ion
motion fromEq. (6)we have

∂L

∂ż
= mż (12)

∂L

∂z
= eA2

r0
0

(U0V cosΩt)

×
[

2z + h

r0

(
3z2 + 3

2
r2
)

+ f

r2
0

(4z3 − 6r2z)

]

(13)

Although coupled secular oscillations have been re-
ported in experimental literature[31], from the point
of view of simplicity of our analysis we have ne-
glected coupled oscillations. With this approximation,
the axial and radial motion can be written as a pair of
uncoupled equations by neglecting the terms involv-
ing r in axial direction and by neglecting the terms
involving z in the radial direction. The equation of ion
motion in axial direction is obtained by substituting
Eqs. (12) and (13)in Eq. (7) and by introducing the
transformationξ = Ωt

2 , we get

z̈ − 8eA2

mr2
0Ω

2
(U0 + V0 cos 2ξ)

×
(
z + 3h

2r0
z2 + 2f

r2
0

z3

)
= 0 (14)

Eq. (14)can be rewritten as

z̈ + (az + 2qz cos 2ξ)(z + α2zz
2 + α3zz

3) = 0 (15)

where z̈ corresponds to the second derivative with
respect toξ and

az = −8eA2U0

mr2
0Ω

2
(16)

qz = −4eA2V0

mr2
0Ω

2
(17)

α2z = 3h

2r0
(18)

α3z = 2f

r2
0

(19)

Equation of ion motion in radial direction can be sim-
ilarly obtained, and is given by

r̈ + (ar + 2qr cos 2ξ)(r + α3r r
3) = 0 (20)

where

ar = 4eA2U0

mr2
0Ω

2
(21)

qr = 2eA2V0

mr2
0Ω

2
(22)

α3r = − 3f

2r2
0

(23)

Eqs. (16), (17), (21) and (22)are expressions for com-
puting the Mathieu parameters in the axial and radial
directions.Eqs. (15) and (20)represent the equation of
ion motion in axial and radial directions, respectively
when there is hexapole and octopole superposition.
The nonlinear quadratic and cubic terms that appears
in the second bracket inEq. (15)represents the field
nonlinearity created by hexapole and octopole super-
position in axial direction. The coefficientsα2z and
α3z, which in turn are related toh and f, incorporate
the magnitudes of the hexapole and octopole super-
positions, respectively. With reference to the radial
equation of motion, the cubic term inEq. (20)repre-
sents the field nonlinearity due to octopole superposi-
tion in radial direction andα3r , which is related tof,
is the magnitude of the octopole superposition in ra-
dial direction. It should be noted that for a particular
hexapole and octopole superposition, motion of ions
are affected in axial direction due to both hexapole
and octopole superpositions whereas in radial direc-
tion hexapole superposition does not have any effect
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on ion motion. This is seen by the absence of hexapole
term in the equation of ion motion in radial direction.

3. Transition curves in nonlinear Paul traps

In mathematical literature stability of the nonlinear
Mathieu equation of the form

z̈ + (az − 2qz cos 2ξ)z ± kz3 = 0 (24)

has received attention for their importance in me-
chanical systems. Stability and the periodic solutions
to equations of the form given byEq. (24)have been
investigated by McLachlan[41] and Mahmoud[42]
using harmonic balance and generalized averaging
method, respectively. Hsieh[43] also investigated
the stability ofEq. (24)with an additional damping
term by taking a asymptotic trial solution. Zavodney
and Nayfeh[44] investigatedEq. (24)with additional
damping and quadratic nonlinear term in their studies
on single degree of freedom system with quadratic
and cubic nonlinearities to a fundamental paramet-
ric resonance. Natsiavas et al.[45] have investigated
the equation similar toEq. (15) without quadratic
nonlinearity but with damping subjected to an exter-
nal excitation by using multiple scales method. The
difference betweenEqs. (15) and (24)is the way in
which the nonlinear terms are added to the linear
Mathieu equation. The nonlinear terms appear as a
multiplicative term inEq. (15) whereas inEq. (24)
the nonlinear terms appear as an addition to the linear
Mathieu equation.

Although several mathematical techniques have
been used to understand stability of nonlinear system
[18,46], the discussion of stability in the papers cited
above focus on the amplitude frequency response of
the system. In the context of our present effort, we
need to identify a method to obtain transition curves
defined byβu = 0 and 1 as well asiso-βu lines for
computing secular frequencies at different operating
points. Based on our earlier experience, we investi-
gated three techniques, which include the Lindstedt–
Poincare, multiple scales and harmonic balance
technique. The Lindstedt–Poincare and multiple

scales are both asymptotic techniques, which pro-
vide periodic solutions to the nonlinear systems. The
Lindstedt–Poincare technique is restricted to small
perturbation parameters and thus low values ofq and
the multiple scales technique, used for study of tran-
sient dynamics, is more complicated. We preferred
using the harmonic balance technique for its sim-
plicity in obtaininga–q relations atβu = 0 and 1 as
well as for estimatingiso-βu lines within the stability
plot for the nonlinear Mathieu equation. The prob-
lem of complicated algebra associated with inclusion
of large number of terms in the harmonic balance
analysis was circumvented by the use of commercial
softwares MATLAB [47] and MAPLE [48]. In the
paragraphs below, we report the method used in de-
riving the continuous fraction relationship similar to
that generally used in the linear Mathieu equation, for
estimating transition curves andiso-βu lines.

In the method of harmonic balance the solution to
Eq. (15)is written in terms of Fourier series with re-
spect to time and has the form as given below

z = C +
∞∑

n=−∞
C2n cos(2n + β ′

u)
Ωt

2
(25)

HereC is a constant andC2n gives the amplitude of
different harmonics that arises due to the nonlinearity;
β ′
u (the prime has been used to differentiate it fromβu

which is traditionally used for linear equations) repre-
sents the frequencies of ion oscillation corresponding
the values of (au, qu) for the nonlinear Mathieu equa-
tion.

If we defineωu,n as the angular frequency of order
n for the motion of ions in thez andr direction, it is
seen that the secular frequency in the axial and radial
directions can be expressed fromEq. (25)as

ωu,n = (n + 1
2β

′
z)Ω, 0 ≤ n < ∞ (26)

and

ωu,n = −(n + 1
2β

′
z)Ω, −∞ < n < 0 (27)

[7] and the secular frequency of the ion oscillation can
be represented as

ωz,0 = 1
2β

′
zΩ (28)
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SubstitutingEq. (25) in Eq. (15) and equating the
constant and like terms to zero the following re-
lations in the axial direction are obtained forn =
0,1,2,3,4, . . . .

azC + 1
2azα2zC0 = 0 (29)

−β ′2
zC0 + azC0 + qzC2 + 2azα2zCC0 + 2qzα2zCC2

+ 3
4azα3zC

3
0 + 3

4qzα3zC
3
2 = 0 (30)

−(2 + β ′
z)

2C2 + azC2 + qzC0 + qzC4 + 2azα2zCC2

+ 2qzα2zCC0 + 2qzα2zCC4 + 3
4azα3zC

3
2

+ 3
4qzα3zC

3
0 + 3

4qzα3zC
3
4 = 0 (31)

C2n

C2n+2
= qz(1 + 2α2zC + (3/4)α3zC

2
2n+2)

(2n + β ′
z)

2 − a(1 + 2α2zC + (3/4)α3zC
2
2n) − qz(1 + 2α2zC + (3/4)α3zC

2
2n−2)(C2n−2/C2n)

(36)

−(4 + β ′
z)

2C4 + azC4 + qzC2 + qzC6 + 2azα2zCC4

+ 2qzα2zCC2 + 2qzα2zCC6 + 3
4azα3zC

3
4

+ 3
4qzα3zC

3
2 + 3

4qzα3zC
3
6 = 0 (32)

−(6 + β ′
z)

2C6 + azC6 + qzC4 + qzC8 + 2azα2zCC6

+ 2qzα2zCC4 + 2qzα2zCC8 + 3
4azα3zC

3
6

+ 3
4qzα3zC

3
4 + 3

4qzα3zC
3
8 = 0 (33)

(2n + β ′
z)

2 = az

(
1 + 2α2zC + 3

4
α3zC

2
2n

)
+ qz

(
1 + 2α2zC + 3

4
α3zC

2
2n+2

)(
C2n+2

C2n

)

+ q2
z (1 + 2α2zC + (3/4)α3zC

2
2n−2)(1 + 2α2zC + (3/4)α3zC

2
2n)(

2n − 2 + β ′
z

)2 − az(1 + 2α2zC + (3/4)α3zC
2
2n−2)

−qz(1 + 2α2zC + (3/4)α3zC
2
2n−4)(C2n−4/C2n−2)

(39)

−(8 + β ′
z)

2C8 + azC8 + qzC6 + qzC10

+ 2azα2zCC8 + 2qzα2zCC6 + 2qzα2zCC10

+ 3
4azα3zC

3
8 + 3

4qzα3zC
3
6 + 3

4qzα3zC
3
10 = 0 (34)

In Eqs. (29)–(34)we neglect appropriate higher or-
der terms in the respective equations. FromEqs. (31)
to (34) the generalized recursion relation solution for
Eq. (15)can be written as follows

−(2n + β ′
z)

2C2n + azC2n + qzC2n−2 + qzC2n+2

+ 2azα2zCC2n + 2qzα2zCC2n−2 + 2qzα2zCC2n+2

+ 3
4azα3zC

3
2n + 3

4qzα3zC
3
2n−2 + 3

4qzα3zC
3
2n+2 = 0

(35)

By collecting the terms havingC2n andC2n+2 coeffi-
cients fromEq. (35)we have

Similarly, by collectingC2n andC2n-2 from Eq. (35)
it can be shown that

qz
C2n−2

C2n

(
1 + 2α2zC + 3

4
α3zC

2
2n−2

)

= (2n + β ′
z)

2 − az

(
1 + 2α2zC + 3

4
α3zC

2
2n

)

− qz

(
1 + 2α2zC + 3

4
α3zC

2
2n+2

)
C2n+2

C2n
(37)

Now replacingn by n − 1 in Eq. (36)we get

C2n−2

C2n
= qz(1 + 2α2zC + (3/4)α3zC

2
2n)(

2n − 2 + β ′
z

)2 − az(1 + 2α2zC + (3/4)α3zC
2
2n−2)

−qz(1 + 2α2zC + (3/4)α3zC
2
2n−4)(C2n−4/C2n−2)

(38)

SubstitutingEq. (38)in Eq. (37)and rearranging the
terms, we have
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Eq. (39)represents a continuous fraction relation-
ship betweenβz, az andqz in terms ofC2n coefficients.
Expanding theEq. (39)in terms ofn and substituting
C = −a2zC

2
0/2 from Eq. (29)under the assumption

C0 � C2n, for n = 0 we get

β ′2
z = az

(
1 − α2

2zC
2
0 + 3

4
α3zC

2
0

)

+ q2
z (1 − α2

2zC
2
0)

2

(β ′
z + 2)2 − az(1 − α2

2zC
2
0) − {q2

z (1 − α2
2zC

2
0)

2/

[(β ′
z + 4)2 − az(1 − α2

2zC
2
0) − (q2

z (1 − α2
2zC

2
0)

2/(β ′
z + 6)2 − az(1 − α2

2zC
2
0) − · · · )]}

+ q2
z (1 − α2

2zC
2
0 + (3/4)α3zC

2
0)(1 − α2

2zC
2
0)

(β ′
z − 2)2 − az(1 − α2

2zC
2
0) − {q2

z (1 − α2
2zC

2
0)

2/

[(β ′
z − 4)2 − az(1 − α2

2zC
2
0) − (q2

z (1 − α2
2zC

2
0)

2/(β ′
z − 6)2 − az(1 − α2

2zC
2
0) − · · · )]}

(40)

Similar analysis for the radial direction yields the fol-
lowing expression forβ ′

r

(β ′
r )

2 = ar

(
1 + 3

4
α3rC

2
0

)
+ q2

r

(β ′
r + 2)2 − ar − {q2

r /(β
′
r + 4)2 − ar − [(q2

r /(β
′
r + 6)2 − ar − · · · )]}

+ q2
r (1 + (3/4)α3rC

2
0)

(β ′
r − 2)2 − ar − {q2

r /(β
′
r − 4)2 − ar − [(q2

r /(β
′
r − 6)2 − ar − · · · )]} (41)

Eqs. (40) and (41)are similar to the continuous
fraction relationship expression obtained for linear
Mathieu equation with a few multiplicative terms that
represent nonlinearities.Eq. (40) consists primarily
of three terms, the first correspondinga and the sec-
ond and the third being continuous fractions. It will
be seen that all thea andq terms are multiplied by a
term which are functions of nonlinearity as well as the
amplitude of the fundamental frequency,C0. It may
be mentioned that this expression has been developed
on the assumption that the amplitude of the frequency
components other than the fundamental is negligible
(C0 � C2n). Also, because of this assumption, only
two of these three terms retain the influence of the
octopole superposition whose contribution may be
seen by the presence ofα3z. All the other a and q
terms are multiplied by the factor (1− α2

2zC
2
0), where

α2z corresponds to the weight of the hexapole term.
Eq. (41)is identical toEq. (40)except for all terms

related to hexapole superposition being zero on ac-
count of the absence of hexapole term in the equation

of motion in the radial direction. Further, in view of
the form ofEqs. (40) and (41), it is apparent that, like
in the linear case, the stability curvesβ ′

u = 0 starts at
the origin. When all the nonlinearities are set to zero,
as in an ideal Paul trap, this expression will become

identical to the continuous fraction relation for linear
Paul traps.

Eqs. (40) and (41)have been derived based on
an approximations that the coefficients of higher or-
der harmonics is zero (please see discussion after
Eq. (39)). In order to check for the consequences
that this approximation has on describing transition
curves in nonlinear ion traps, we have compared the
results predicted byEq. (40)with numerical simula-
tion of Eq. (15)along theaz = 0 axis at (qz)cut-off .
Numerical calculation is carried out by using fourth
order Runge–Kutta method available in MATLAB
[47]. The (qz)cut-off value is determined by noting
the value ofqz value at which the trajectories exceed
the trap dimension (in our case it is 5e − 3m). In our
computations, we have kept the step size as 1e − 7,
initial velocity as zero and initial position as 1e−4m.

Fig. 1shows the shift of (qz)cut-off for different val-
ues of nonlinearity (up to 5% hexapole+ 5% posi-
tive octopole) obtained from our continuous fraction
expression (Eq. (40)). This curve has been compared
with the numerically obtained values for (qz)cut-off for
the same range of nonlinearity. From the plot it can
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Fig. 1. Variation of (qz)cut-off with weight of (hexapole+ octopole) superposition.

be seen that for small values of hexapole and pos-
itive octopole superposition the (qz)cut-off value cal-
culated fromEq. (40)remains close to the (qz)cut-off

value calculated numerically. The difference between
the (qz)cut-off value estimated byEq. (40) and the
(qz)cut-off value obtained numerically increases with
increase in the hexapole and positive octopole su-
perposition. For instance, the difference between the
(qz)cut-off value estimated by theEq. (40) and the
(qz)cut-off value obtained numerically for 5% hexapole
and 5% positive octopole superposition is about 5.7e−
3, with Eq. (40)predicting lower (qz)cut-off value.

4. Results and discussions

The motivation of this paper is to understand the role
of the hexapole and octopole field inhomogeneity in
altering the stability region of ions as well as perturb-
ing the iso-βu lines within the Mathieu stability plot.
In the paragraphs below, we present the results of our
simulation for hexapole and octopole superposition of
2.5 or 5% and for value ofC0 = z0 = 4.9497e − 3m.

Figs. 2–5show the shift in the transition curves cor-
responding toβ ′

u = 0 and 1 for different values of non-
linearity. The continuous fraction relationship given
by Eq. (40)is used for computing the values ofβ ′

z and
the iso-β ′

z lines are plotted in theaz–qz plane, where
az and qz are the Mathieu parameters for an ideal
trapping conditions (i.e., no nonlinearity is present).
Figs. 2–4show the variation of the transition curves
for 2.5 and 5% of hexapole superposition, 2.5 and 5%
of positive octopole and 2.5 and 5% of negative oc-
topole, respectively.Fig. 5shows the shift in transition
curves for 5% of hexapole superposition and 5% of
positive octopole superposition. Stability boundaries
corresponding to the ideal condition (when there is no
nonlinearity) has also been included in all these plots
for the sake of comparison. For plottingFigs. 6–9we
have considered only the axial direction and the dc
potential is kept at zero (i.e.,az = 0). Figs. 6 and 7
shows the variation ofβ ′

z for different nonlinear con-
ditions in axial direction.Fig. 6shows the variation of
β ′
z with respect toqz values for 5% hexapole superpo-

sition andFig. 7shows the variation inβ ′
z with respect

to qz for 5% positive octopole superposition and 5%
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Fig. 2. Transition curves for 2.5 and 5% hexapole superposition.

Fig. 3. Transition curves for 2.5 and 5% positive octopole superposition.
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Fig. 4. Transition curves for 2.5 and 5% negative octopole superposition.

Fig. 5. Transition curves along with theiso-β lines for 5% positive octopole and 5% hexapole superposition.
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Fig. 6. Variation inβ ′
z andβ(Duffing) with respect toqz for 5% hexapole superposition.

Fig. 7. Variation inβ ′
z andβ(Duffing) with respect toqz for 5% positive octopole and 5% negative octopole superposition.
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Fig. 8. Variation inB for different values of hexapole and octopole superposition.

Fig. 9. Variation ofB with respect to axial distancez for different values ofβ ′
z.



S. Sevugarajan, A.G. Menon / International Journal of Mass Spectrometry 218 (2002) 181–196 193

negative octopole superposition. InFigs. 6 and 7, we
have also included the curves forβz values computed
from continuous fraction relationship for the ideal trap
andβz(Duffing) values corresponding to Duffing equa-
tion approximation from our earlier publication[32],
which is valid forqz < 0.4, for the purpose of com-
parison.

For plottingFigs. 8 and 9we introduce a new pa-
rameterB to represent the percentage of shift inβ ′

z

value with respect to idealβz and is given by

B = β ′
z − βz

βz

× 100 (42)

Fig. 8 shows the variation ofB for different values of
hexapole and positive octopole superpositions when
β ′
z = 0.5. The changes in values ofB with respect to

axial distancez are shown inFig. 9for different values
of β ′

z.
Fig. 2shows the transition curves inz andr direction

in anaz, qz plane for 2.5 and 5% hexapole superposi-
tion. FromFig. 2 it is seen that for a particularaz–qz
value the transition curve moves to the right of the
stability boundary corresponding to the ideal Mathieu
equation. This indicates that for a given (az, qz) the
β ′
z value is less than theβz value and occurs because

the term corresponding to the hexapole superposition
in Eq. (40)has a negative sign. Since the secular fre-
quency is computed fromEq. (5), the hexapole super-
position results in decrease in the secular frequency of
the ion motion. This explains the decrease in secular
frequency observed by Franzen[8] and Franzen et al.
[14] in their numerical simulation studies. This results
also matches with our earlier results[32,33] in which
frequency perturbations are analyzed forqz < 0.4 as
well as the simulation results of Sudakov[35]. The
inset shows a portion of the figure zoomed for bet-
ter comparison with the ideal stability boundary. Two
points are to be mentioned here. First is that there will
be no shift in the transition curve inr direction as there
is no term corresponding to hexapole superposition in
the equation of ion motion (Eq. (20)). Secondly, the
hexapole superposition varies theβ ′

z value quadrati-
cally and hence the shift in stability boundaries due to
hexapole superposition is independent of the sign of

superposition. This has been observed by authors in
references[8,14,35]in their simulation studies.

Figs. 3 and 4show the shifts of transition curves
for octopole superpositions.Fig. 3shows the effect of
shift for 2.5 and 5% positive octopole superposition,
whereasFig. 4 shows the shift for 2.5 and 5% nega-
tive octopole superpositions. FromFigs. 3 and 4, it is
seen that the transition curve moves to the left of the
stability boundary corresponding to the ideal Mathieu
equation for a positive octopole superposition whereas
it moves away to the right of the ideal Mathieu stabil-
ity boundary for the negative octopole superposition.
From theFigs. 3 and 4, it can be seen that the magni-
tude of the shift in transition curves due to the positive
and negative octopole superposition are same but in
opposite direction and hence the shifts are dependent
on the sign of octopole superposition. Due to this shift
and fromEq. (5)it is seen that the secular frequency of
the ion oscillations will increase with increase in pos-
itive octopole superposition whereas it will decrease
with increase in the negative octopole superposition.
Cox et al.[21] in their experimental studies have also
reported such behavior due to octopole superposition.
Similar results have been reported by Franzen[8,13]
and Franzen et al.[14] in their simulation studies.
Makarov[15] and Luo et al.[16] have also pointed out
the increase in secular frequency for positive octopole
superposition in the cases whenqz < 0.4. These re-
sults are also in conformity with our earlier reports
[32,33].

For a given trap with either positive or negative oc-
topole superposition the shift in transition curves will
be opposite inz andr directions as seen inFigs. 3 and
4. Positive octopole superposition will result in shift-
ing theβ ′

z = 0 and 1 curves to the right of the ideal
stability boundaries inz direction whereas it will shift
the β ′

z = 0 and 1 below the stability boundaries in
r direction. This is due to the coefficient of octopole
term in Eq. (15), α3z, having a positive sign whereas
the co-efficient of octopole term inEq. (20), α3r , has
a negative sign. Alheit et al.[49] in their experimental
observations of instabilities in a Paul trap with higher
order anharmonicities have shown a similar effect
in variation of βz and βr with respect to octopole
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superposition. ComparingFigs. 2 and 4it can be seen
that hexapole and negative octopole have the same
effect of shifting the stability boundaries to higher
values ofqz. However, the magnitude of shift will be
larger for a given negative octopole superposition in
comparison to same value of hexapole superposition.

Fig. 5 shows the stability diagram for 5% hexapole
and 5% positive octopole superposition with theiso-β
lines included in the figure. In this plot, the broken
lines corresponds to the stability boundary andiso-βz

for an ideal condition while the solid lines represents
the transition curves andiso-β ′

z for the given nonlin-
ear condition. This plot is similar to that of the exper-
imental stability plot obtained by Johnson et al.[11]
in their studies on the stretched quadrupole trap al-
though they attributed the shift to different factors such
as scan function and the effective time of the applied
voltages in their experimental setup. Arkin et al.[12]
in their experimental studies to characterize a hybrid
trap also obtained a distorted stability plot similar to
that of Fig. 5. The hybrid trap used by Arkin et al.
[12] can be considered as a highly distorted nonlin-
ear Paul trap and consequently, can be interpreted to
result from superposition of positive octopole.

Fig. 6plots variation ofβ ′
z with respect toqz values

for 5% hexapole superposition. This plot compares
βz values computed from our earlier paper[32] to
our present studies. Our earlier study was based on
pseudopotential well approximation and the equation
of ion motion was represented by Duffing equation
with the validity ofqz up to 0.4. The value ofβz(Duffing)

is calculated with the help of the following equation

βz(Duffing) = 2ω

Ω
(43)

whereω is the shifted secular frequency for a given
hexapole and octopole superposition and is given by
[32]

ω = ω0

(
1 + 144f − 405h2

48
A2

0

)
(44)

Hereω0 is the ideal secular frequency andA0 is the
amplitude of ion oscillation, which in our present com-
putation has been fixed asz0 (the shortest distance
from the center of the trap to one endcap electrode)

with the value of 4.9497e − 3m (for a ring electrode
radius of 7e−3m). From the figure it is seen that both
β ′
z and βz(Duffing) deviates from theβz values com-

puted for an ideal trap for a given hexapole superpo-
sition with βz(Duffing) having a larger deviation from
βz compared toβ ′

z.
Fig. 7shows variation ofβ ′

z andβz(Duffing) with re-
spect toqz for 5% positive octopole and 5% negative
octopole superposition along theaz = 0 axis. Here
too βz(Duffing) has a larger deviation fromβz thanβ ′

z.
β ′
z increases for a positive octopole superposition and

decreases for a negative octopole superposition in
comparison toβz and both curves display an increas-
ing trend with increase inqz values. Cai et al.[36]
and Alheit et al.[49] have observed similar behavior
in their experimental studies.

Fig. 8shows the variation inB (Eq. (42)) for differ-
ent hexapole and octopole superposition. In this plot
the value ofqz is kept at 0.6393, corresponding to a
βz value of 0.5. It is seen thatB increases linearly with
positive octopole superposition and decreases quadrat-
ically with hexapole superposition in conformity with
the expectation of linear increase in secular frequency
for positive octopole superposition and a quadratic
decrease in the secular frequency for hexapole super-
position. These observations are on account ofα2z,
corresponding to the hexapole superposition, appear-
ing as a quadratic term andα3z, corresponding to the
octopole superposition, varying linearly inEq. (15).
The magnitude of variation ofβ ′

z with the negative
octopole is similar to that of the positive octopole
superposition but the direction of shift will be oppo-
site. Similar results have been reported by Franzen
et al. [8,14].

Fig. 9 shows the variation ofB with respect to the
axial distancez from the center of the trap for 5%
hexapole and 5% positive octopole superposition for
β ′
z values of 0.2, 0.4, 0.6, 0.8 and 0.9. From the figure

it is seen that at the center of the trap the value forB is
zero indicating that the field at the center is due to pure
quadrupolar potential. From the figure the quadratic
variation ofB with respect to axial distance is evident
from the curves for higherβ ′

z values. Similar results
have been reported by Franzen[8,13] and Franzen
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et al. [14] in their simulation studies. Splendore et al.
[50] also have reported such behavior in their simu-
lation study of kinetic energies during resonant exci-
tation in a stretched ion trap. This figure also shows
that the shift becomes more pronounced asβ ′

z → 1.

5. Concluding remarks

The motivation of the present study was understand
the role of field inhomogeneties in altering the sta-
ble regions of nonlinear Paul trap operation. We have
sought to define the boundaries of the stability regions
by means of transition curves, which correspond to the
periodic solution of a weakly nonlinear Mathieu equa-
tion. The harmonic balance technique was employed
to develop a continuous fraction expression forβu in
terms ofau andqu.

Although these transition curves developed here
cannot strictly be considered as the stability bound-
aries of the nonlinear Mathieu equation, it was seen
that they adequately reflect experimental observations
available in literature for stability of ions in nonlinear
Paul traps. The shift in the transition curves from
the ideal stability boundaries varies quadratically
with hexapole superposition and is sign insensitive
whereas for octopole superposition it varies linearly
and is sign sensitive. For the same value of super-
position, the shift in the transition curves is larger
for negative octopole superposition than for hexapole
superposition. The shift in transition curves from the
ideal stability boundaries increase with increase inqu
values. These predictions obtained from our expres-
sions are in qualitative agreement with experimental
observations in literature.

Secular frequency shifts obtained by our continuous
fraction expression have been compared with both ex-
perimental work as well as simulation studies reported
in literature. It is seen that the shift in secular frequency
varies quadratically with hexapole superposition and
is independent on the sign of superposition. Similarly,
our analytical expression suggests that the secular fre-
quency varies linearly with octopole superposition and
is dependent on the sign of superposition. For a given

hexapole or octopole superposition the shift in secular
frequency increases with increase inqz values.
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